Bus tracing under Windows.

I’ve used USB Sniffer v1.8 to sniff USB bus transactions under Windows. It works, although generates very verbose output (and I have to copy the .log files to a unix box, where grep/sed/awk can actually make them useful. Yes, I know about cygwin, no, command line editing under windows still sucks). I was told to […]

Elliptic Cryptography textbook

Looked some more at AACS specs. Realized that I don’t know jack about elliptic cryptography. Asked Yuly Billig what he recommends as a gentle introduction to elliptic cryptography for dummies with limited algebra skills. He recommended “A Course in Number Theory and Cryptography” by N. Koblitz, QA 241.K672. Carleton library has two copies, so next […]

Peter Watts’ Books are licensed under CC

Peter Watts, a Canadian Marine Biologist responsible for Vampire Domesticantion lectures (Which you should spend 40 minutes and listen to, and definitely read the little corporate slogans at the corner of each slide) licensed a bunch of his books under CC license, and made them available for download. Thank you, Peter! I was looking on […]

Watching HD content (Part I)

Introduction One of my fields of interest is video making. I’ve been eyeing the HD stuff with a bit of curiosity, and pretty much convinced myself to step up to HD production. When I learned that Microsoft released an add-on to Xbox 360, consisting of an HD-DVD drive in an external USB-accessible enclosure, after some […]

Cisco Hardware emulator

dynamips is an emulator of various Cisco platforms, that is licensed under GNU GPL, and runs under Windows, Linux, Solaris, MacOS, etc. Dynamips started off as a MIPS emulator for Cisco 7200, and gradually ended up capable of emulating Cisco 7200 family, Cisco 3600 family, 2600 family (with some exceptions), and Cisco 3725 and 3745. […]

Proof that any self-adjoint matrix is diagonalizable.

(Sorry. If you don’t know what this is, please ignore it. It’s not important. Really.) Setup: If A is self-adjoint, and W is an A-invariant subspace ⇒ W⊥ is A-invariant. Want: ∀ x∈W⊥, Ax ∈ W⊥〈Ax,w〉 = 0 ∀ w ∈ W ⇐ Orthonormal Given:〈Ax,w) =〈x,Aw〉 ⇐ Self-Adjoint Aw∈W ⇐ W is A-invariant then〈x∈W⊥, Aw∈W〉= […]